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Abstract

Social scientists are confronted with the task of researching

idiosyncratic entities and constructs that exist in a variable

universe. As a result, explaining the results of social science

research is a daunting task. Nevertheless, all scientists hope to find

answers to research questions that are true, and therefore replicable.

Unfortunately, evidence of replicability is often missing from

reported research. Developed by Efron (1979) and his colleagues

(Diaconis & Efron, 1983), bootstrap methods have the goal of creating

an empirical sampling distribution that can be used to test

statistical hypotheses, estimate standard errors, and create

confidence intervals. Bootstrapping methods offer a unique and

effective method for testing the stability and replicability of

results. This paper explains the bootstrap method of exploring

replicability internally, including a heuristic example applying

bootstrap methods to a confirmatory factor analysis, using SPSS and

AMOS.

3



Using Bootstrap 3

Using Bootstrap Methods with Popular Statistical Packages

Social scientists are confronted with the task of researching

idiosyncratic entities and constructs that exist in a variable

universe. As a result, explaining the results of social science

research is a daunting task. Often, there are several plausible

explanations for the results that have been obtained. Any single study

is limited in its capacity to explain the complex phenomena that are

usually the subject of social science research. Nevertheless, all

scientists hope to find answers to research questions that are true,

and therefore replicable. Thompson (1995) noted, "the most promising

strategies emphasize interpretation based on the estimated likelihood

that results will replicate" (p. 86).

Unfortunately, evidence of replicability is often missing from

reported research. This is in no small part due to researchers'

misconceptions that statistical significance tests to provide evidence

of both importance and replicability. In fact, statistical

significance tests do neither (Cohen, 1994; Thompson, 1994b, 1995).

This topic has received much attention in recent methodology

literature and remains controversial. The APA Task Force on

Statistical Inference (Wilkinson & APA Task Force, 1999) recommended

requiring researchers to address the stability of their results by

methods such as effect size reporting (e.g., R2, eta2) and comparing

results to previous studies.

The only true way to know the replicability of a study is to draw

a new sample and do the study again. This is called "external"

replication and is rarely, if ever, done in the social sciences. Other
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methods of exploring replicability "internally" are available. Rodgers

(1999) provides a very accessible overview of the bootstrap, the

jackknife, and the randomization test. The present paper will explain

the bootstrap method of exploring replicability internally, including

a heuristic example applying bootstrap methods to a confirmatory

factor analysis, using SPSS and AMOS.

Understanding the Sampling Distribution

Before explaining the particulars of the bootstrap method, a

brief review of the different types of distributions used in research

is prudent. There are three types of distributions that one needs to

understand in order to understand the role of the bootstrap: the

population distribution, the sample distribution, and the sampling

distribution.

Picture a histogram of scores, with one asterisk for each person

in the population of interest. This is the population distribution.

Calculations that characterize the population (e.g., means, variances,

ranges, correlations) are called parameters. However, the entire

population of interest is rarely available for study, because most

researchers want to generalize their results to the widest possible

population. Therefore, the researcher draws a sample of the

population.

The histogram of scores for this sub-group of the population is

the sample distribution. Statistics are calculations that characterize

a sample. No two samples will be exactly the same. The uniqueness that

characterizes a sample is called sampling error. Statistical

significance tests evaluate the probability that the difference
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between statistics is due to sampling error. [An important point to

remember is that, as Cohen (1994) pointed out, the population used in

statistical significance testing is presumed to be one in which the

null hypothesis is perfectly true (e.g., no difference between groups,

no treatment effect).] The estimation of this probability invokes the

sampling distribution.

Although both the population and the sample consist of scores,

the sampling distribution consists instead of sample statistics

estimating population parameters. [A hybrid special case arises when

(a) the statistic of interest is the mean and (b) n=1, because in this

case each sample statistic in the sampling distribution is also a

statistic from the population.] So, we must specify what parameter we

are estimating in order to carry forward this discussion. Let's

presume that the parameter of interest is the score variance.

Imagine that you could take every possible sample of size n from

the population, administer a measurement, and calculate the variance.

Each time you calculate the variance for a sample you plot that

variance on a histogram. When you finish calculating and plotting the

variance for each and every possible combination of n people (or

whatever you are measuring), you have a sampling distribution--a

histogram of statistics (in this case, variances) obtained from

repeated samplings, that models the sampling error.

Each entry for a parameter estimate that is used to create the

sampling distribution is based on exactly the same sample size, n,

that was the sample size of the actual sample. We must use exactly

this sample size for every estimate employed in creating the sampling
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distribution, because we are modeling how the sampling error affects

the parameter estimates, and the amount of sampling error is largely

influenced by the sample size, with more sampling error occurring as n

is smaller.

Each sampling distribution is unique to both sample size and the

particular statistic being estimated. For example, the sampling

distribution of variances for samples of 25 is different than one of

variances for samples of 26, as well as being different from a

sampling distribution of means for samples of 25.

There are three types of sampling distributions (Rodgers, 1999).

The one described above is called the "idealized" sampling

distribution, and is made up of all possible resamples from the actual

population. However, researchers usually do not have access to the

entire population. If they did, they would not be using a sample.

Therefore, science has attempted to model the idealized sampling

distribution two ways, theoretically and empirically.

Social scientists are no doubt familiar with statistical

significance tests such as F and t. These tests invoke "theoretical"

sampling distributions. These distributions are mathematically derived

and are said to represent the idealized distribution if certain

assumptions are met (e.g., normal distribution, equality of variance).

An analogy to using a theoretical sampling distribution is buying

clothes "off the rack". These clothes come in many sizes and styles,

but they are constructed with the assumption that people of a certain

size will all be symmetrical and have the same basic measurements of

height and width.
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In contrast, the second way of modeling the idealized

distribution is to create an "empirical" sampling distribution. This

is analogous to "haute couture", where clothes are made to your exact

measurements and specifications. Reordering or redrawing the original

sample derives an empirical sampling distribution from the data in

hand (Rodgers, 1999). There are several advantages to using an

empirical sampling distribution. For instance, the only assumption

required for the use of an empirical sampling distribution is that the

researcher believes the sample to be representative of the population,

making this technique especially useful for sample data that does not

conform to normality assumptions. Also, theoretical sampling

distributions are not available for many statistics of interest (e.g.,

modern statistics). An empirical sampling distribution can be created

for any statistic of interest to the researcher (Thompson, 1994a).

Sir Ronald Fisher, who developed the F distribution, was

convinced of the superiority of the empirical sampling distribution to

the theoretical sampling distribution. Rodgers (1999) reported some of

the relevant history and states, "Fisher felt that a test using a

theoretical sampling distribution was valid only to the extent that it

matched the results that would be obtained using an empirical sampling

distribution" (p. 442).

Rodgers suggested that researchers' reliance on test statistics

(and therefore theoretical sampling distributions) is only an accident

of time. Had computers been available to assist in creating the

empirical sampling distribution, the need for theoretical

distributions would have disappeared. Just as the haute couture method
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of designing clothing is incredibly expensive, empirical sampling

distributions are computationally expensive. However, with modern

computers, an empirical sampling distribution can be created within

seconds at essentially no cost.

Understanding the Bootstrap Method

Developed by Efron (1979) and his colleagues (Diaconis & Efron,

1983), bootstrap methods have the goal of creating an empirical

sampling distribution that can be used to test statistical hypotheses,

estimate standard errors, and create confidence intervals. Diaconis

and Efron explained that the name "bootstrap" is derived from the old

saying about pulling yourself up by your own bootstraps, reflecting

"the fact that the one available sample gives rise to many others" (p.

120). Thompson (1995) explained the method:

Conceptually, these methods involve copying the data set

many times into an infinitely large "mega" data set. Then

hundreds or thousands of different samples are drawn from

the "mega" file and results are computed separately for

each sample and then averaged. (p. 86)

What actually happens is sampling with replacement. This method

creates an environment where a person from the original sample could

be drawn more than once in a given resample or not at all, but all

resamples will have the same number as the original sample. The

resulting empirical sampling distribution "informs the researcher

regarding the extent to which results generalize across different

types of samples" (Thompson, 1995, p. 86).
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For our heuristic example, this paper used cognitive data on 301

students (Holzinger & Swineford, 1939, pp. 81-91) to illustrate a

bootstrap of a confirmatory factor analysis (CFA). The model for the

analysis is presented in Figure 1. The analyses were run using SPSS

9.0 and Amos 4.0. Arbuckle (1997) recommends fixing the regression

paths in the model, as opposed to fixing the variances. He warns that

fixing the variances when performing bootstrap replications could

result in inflated estimates of standard errors.

Four separate analyses were run. First, a CFA of the model was

performed on the entire population of 301 students, using 200

bootstrap resamples. For purposes of comparison, we will treat the 301

students as our population of interest, the one to which we want to

generalize. This data will serve as our population distribution. Then,

three separate CFA's were performed on a random sample of 75 students

with 10, 200, and 2000 bootstrap resamples respectively.

As mentioned previously, in the bootstrap resampling process, an

individual may be selected more than once, or not at all, in any given

resample. Using Amos, you can request a summary of the bootstrap

samples. The output of this request resembles the data presented in

the Appendix. For each bootstrap sample, a list of integers is

displayed. The list should be read from left to right, beginning with

the first row. The first integer tells how often the first person in

the original sample appeared in the bootstrap sample. The second

integer tells how often the second person appeared, and so on.

The careful reader will notice that "Bootstrap Sample 2" and

"Bootstrap Sample 6" appear twice, with different numbers in each set.
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This is because Amos was unable to find a solution to two of the

samples, thus drawing two more, for a total of twelve resamples drawn

to obtain 10 usable samples. This information can be used to compute

the average number of times people were used in the resamples, which

should very nearly equal the number of resamples if the process was

truly random.

Using the bootstrap methods with multivariate techniques, such as

CFA, requires some special considerations. Thompson (1994a, 1995)

provides a thorough explanation of this topic. Because factors tend to

fluctuate in their orders over samples, Factor I might reflect Speed

in one sample and Memory in the next. As Thompson (1995) wryly noted:

If the analyst computed the mean structure (or

pattern) coefficients for the first variable on the

first component across all the repeated samplings, the

mean would be a nonsensical mess representing an

average of some apples, some oranges, and perhaps some

kiwi. (pp. 88-89)

To provide control, Procrustean methods are used to rotate all factors

into a common factor space. Declaring a target matrix can do this. A

target matrix might be made up of (a) ones, zeroes, and negatives

one's modeling a simple structure based on theoretical expectations,

(b) a structure or weight matrix from previous research or the data in

hand, or (c) a graphic model such as ours, similar to those used in

structural equation modeling.
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Exploring Bootstrap Results in Amos

In the text output, following the Maximum Likelihood Estimates,

Amos prints out the Bootstrap Results. First, is a Summary of

Bootstrap Iterations, followed by the Summary of Bootstrap Samples (as

in the Appendix), if this has been requested. Then, Amos provides the

Bootstrap Standard Errors. This section presents a summary of the

statistics from the empirical sampling distributions that were created

by the bootstrapping process. Table 1 summarizes some of these results

for the population. For example, the beta (B) weight (pattern

coefficient) for the Speeded Addition Test (spdadd) reported is the

mean value from the empirical sampling distribution of 200 pattern

coefficients over 200 bootstrap samples. Table 1 reports statistics

from 12 different empirical sampling distributions (one for each

variable, for each statistic). All in all, 28 separate empirical

sampling distributions were created by Amos to estimate the reported

bootstrap results, each consisting of 200 estimates.

The standard error (SE) reported is the standard deviation of the

empirical sampling distribution. The SE is an extremely important

statistic in all inferential analyses (Thompson, 1994a). The ratio of

a statistic to the SE of a theoretical sampling distribution is

variously known as t, F, critical ratio, and Wald's statistic.

Bootstrap estimates of SE can also be used for inferential purposes,

but the have an added benefit that theoretical SE's do not offer.

Bootstrap SE estimates give the researcher an idea of the stability of

the estimates over hundreds (or thousands) of configurations of the

sample population. In spite of commonly held beliefs and practices, it
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is this descriptive use of the SE that speaks to replicability, not

the inferential use described above.

If the sample statistic is relatively equal to the mean bootstap

estimate, and the SE is small in relation to the mean bootstrap

estimate, then the sample statistic can be thought of as stable and,

therefore, more likely to replicate. On the other hand, if the SE is

large in relation to the mean bootstrap estimate or the difference

between the mean bootstrap estimate and the sample statistic reflects

a great deal of bias, then caution interpreting the sample data is

warranted, as the results show instability. To further assist the

researcher with this task, Amos provides Bias estimates and the SE of

the SE along with the other bootstrap estimates.

Because maximum likelihood estimates (the default in Amos) assume

normality in the distribution of the sample, a noticeable difference

in the original estimate and the bootstrap estimates might indicate a

deviation of the sample distribution from normal. Table 2 gives an

overview of the descriptive statistics for the population and the

sample. A large SE could indicate the presence of problems in the

distribution due to sampling error. For instance, Tables 3, 4, and 5

present the original and bootstrapped estimates for the pattern

coefficients, the squared multiple correlations, and the error

variances for comparison. Even the most cursory perusal will draw the

eye to the measure variable "memnumb". Bootstrap estimates of all of

the statistics for "memnumb" are anomalous in relation to the other

variables. The results themselves seem impossible, including negative

error variances and R2 estimates of over 400. Explaining the source of

13



Using Bootstrap 13

these anomalies is beyond the scope of this paper (and this writer).

However, clearly there is a problem with this variable that needs to

be examined. More important, the problem is not apparent in the

original estimates, only in the bootstrapped estimates.

Because, in this heuristic example, we have the luxury of knowing

our population parameters, we can see how well our sample did at

estimating the characteristics present in the population. A comparison

of Table 1 and Table 2 illustrates that while the sample did a

moderately good job at representing the parameters for the Speed

factor, the results are quite different for the Memory factor.

However, pattern coefficients are often notoriously unstable across

changes in the sample (Thompson, 1994b). Yet, comparing Table 1 with

Table 3, we see that "spdadd", "spdcount", "memnumb", and "memshape"

all vary noticeably from the population parameters. Using the sample

estimates alone, a researcher might easily have drawn erroneous

conclusions about the population.

In fact, we do not need to compare to Table 1. By investigating

the R2 estimates and the SE's for these variables, we notice that the

SE estimates are nearly equal to or greater than the R2 estimates on

those variables. This is indicative of instability. Bootstrapping

methods are the only way to get an estimate of standard error for

multiple correlations, as Amos does not provide them otherwise.

Another use of the empirical sampling distribution that speaks

both to replicability and importance is the creation of confidence

intervals. The earlier mentioned APA Task Force on Statistical

Inference (Wilkinson & APA Task Force, 1999), also strongly
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recommended reporting of confidence intervals to address the stability

of the results obtained and to give the reader a context for

interpretation of results. These suggestions will likely become

requirements for all APA journals in the near future. Several (i.e.,

13) journals are already requiring the reporting of effect sizes

(Vacha-Haase, Kogan, & Thompson, 2000). If requested, Amos will

provide confidence intervals for any statistic that has a bootstrap

estimate.

Advantages and Limitations

Bootstrapping is a unique and effective method for testing the

stability and replicability of results. While the bootstrap results of

our sample data caused concern about the stability of our results, the

same method could strengthen readers' (and editors') confidence in

results that are found to be stable. Remember, the original Holzinger

and Swineford (1939) study used the entire sample of 301 students. The

bootstrapped SE estimates on that study (after 200 resamples) range

from .05-.09!

The advantages of using bootstrap methods include not having to

conform to distributional assumptions, or worry that violating

assumptions somehow affected the outcome of the analysis. This paper

presented one example applying bootstrap methods to a CFA with one

model. Bootstrap methods can also be used to compare estimation

methods and competing models (Arbuckle, 1997). Beyond CFA, these

methods can be used with any analysis (e.g., t-test, ANOVA,

Correlations, Canonical Correlation Analysis, etc.) and with any

statistic (e.g., Roy's largest root, Wilk's lambda, trimmed means).
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There are limits to the useful application of bootstrapping

methods, however. Bootstrapping should be done only on relatively

large samples. As a result, Thompson (1994a) recommended using samples

of 40 or larger. Another important limitation is that bootstrapping

cannot surpass or correct the limits of the data or the design of a

study. Similarly, if you happened to pull a sample of people with an R2

of .99, you will never get a large standard error, even if the actual

population parameter is quite different. Lunneborg (1999) cautions

researchers to incorporate knowledge of the design into the

interpretations of bootstrap estimates. Bootstrapping cannot turn a

descriptive design into an inferential one. Conclusions drawn from

bootstrapped results should match the design of the study.

Bootstrap methods are computationally complex, yet the desktop

computer used to perform this study computed 2000 bootstrap samples in

less that three minutes. More and more computer software is becoming

available, as well. Amos can work in conjunction with SPSS. Thompson

(1994a) and Rodgers (1999) mention several other programs that

bootstrap as well, including EQS, S Plus, Resampling Stats, and SAS

(by downloading macro programs from their website).

As Thompson (1996) insisted, "If science is the business of

discovering replicable effects, because statistical significance tests

do no evaluate result replicability, then researchers should use and

report some strategies that do evaluate the replicability of their

results" (p. 29). There seems to be little in the way of empirically

exploring the internal replicability of obtained results. Increasing

awareness that statistical significance tests do not address
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replicability will necessitate researchers finding other ways to

attend to this important issue.
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Figurel. Input model for confirmatory factor analysis, including

six measured variables: Speeded Addition Test (spdadd), Speeded

Code Test (spdcode), Speeded Counting of Dots in Shape

(spdcount), Memory of Target Words (memword), Memory of Target

Numbers (memnumb), and Memory of Target Shapes (memshape).

spdadd

spdcode

1 spdcount
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Table 1

Summary of Bootstrapped "Population" Parameters

Using Bootstrap 20

Factor and

Parameter Estimates

Variables B SE R2 SE

Speed

spdadd .715 .05 .514 .08

spdcode .647 .07 .423 .09

spdcount .644 .05 .417 .09

Memory

memword .652 .06 .428 .08

memnumb .581 .06 .341 .07

memshape .608 .07 .374 .09
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Table 2

Descriptive Statistics of "Population" and Sample Distributions

Measured Variables

Statistics spdadd spdcode spdcount memword memnumb memshape

Population
(n=301)

Mean 96.30 69.20 110.50 175.20 90.00 102.50

SD 25.06 15.67 20.25 11.51 7.73 7.63

Skewness .25 .26 .53 .85 -.09 -.95

Kurtosis -.27 .49 1.24 1.91 -.17 3.55

Sample
(n=75)

Mean 95.40 69.24 110.47 175.63 89.08 101.65

SD 25.67 14.99 20.71 9.68 7.74 8.23

Skewness -.09 .20 1.14 -.25 .01 -2.11

Kurtosis -1.07 .71 3.66 .38 -.19 9.78

Note. The skewness and kurtosis are used in inferential applications of the

bootstrap results. The skewness and kurtosis are used in determining the

value of the alpha percentage.

22



Using Bootstrap 22

Table 3

Summary of Original and Bootstrapped Estimates of Standardized Regression

Weights (Pattern Coefficients) for Sample of 75

Paths Ba

Bootstrapped Estimates by No. of Resamples

10 200 2000d

Bb SEC Bb SE` Bb SE`

spdaddeSpeed .776 .781 .24 .834 .34 .839 .29

spdcodeeSpeed .649 .710 .28 .643 .18 .644 .18

spdcount -Speed .593 .526 .24 .587 .15 .577 .15

memword- Memory .551 .507 .19 .554 .21 .544 .22

memnumbeMemory .626 .815 .54 1.808 11.19 3.541 20.03

memshapeeMemory .383 .403 .17 .386 .165 .375 .18

aOriginal estimates without bootstrapping. Amos does not provide standard

error estimates. bReflect the mean value of sampling distribution for the

statistic. cThe standard error is the standard deviation of the sampling

distribution. It reflects the stability of the estimate over resamples. dIf

using bootstrap for inferential purposes, large numbers of resamples are

necessary.
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Table 4

Summary of Original and Bootstrapped Estimates of Squared Multiple

Correlations (Communality Coefficients) for Sample of 75

Factors and
Variables R2

Bootstrapped Estimates by No. of Resamples

10 200 2000

R2 SE R2 SE R2 SE

Speed

Spdadd .602 .662 .34 .815 1.41 .788 .92

Spdcode .421 .576 .57 .446 .28 .447 .23

Spdcount .351 .328 .23 .368 .20 .355 .20

Memory

Memword .304 .289 .18 .352 .34 .357 .37

memnumb .392 .929 1.48 a b c d

memshape .147 .188 .12 .176 .13 .172 .15

aR2=127.80 b5E=1297.93 cR2=413.68 d5E=3310.83
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Table 5

Summary of Original and Bootstrapped Estimates of Error Variance Estimates

for Sample of 75

Original Estimates Bootstrapped Estimates

200 Resamples 2000 Resamples

Factors Total Error Error Error
and Variance Variance SE Variance SE Variance SE

Variables

Speed

spdadd 658.94 258.52 104.74 115.54 902.17 134.68 587.96

spdcode 224.67 128.24 31.18 120.16 47.09 119.31 46.72

spdcount 428.93 274.47 58.23 261.66 80.33 267.47 74.54

Memory

memword 93.67 64.37 18.60 58.64 40.25 58.23 32.08

memnumb 59.89 35.91 13.88 a b d

memshape 67.77 57.07 10.95 53.37 19.13 55.58 21.18

aError Variance=-7198.24. bSE=74091.50. 'Error Variance=-2.54e+004.

dSE=2.06e+005.
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